
Dot product
The dot product is an inner product on a coordinate vector space (Definition 1, Theo-
rem 1).

Definition 1 Given vectors v and u in n-dimensional space, the dot product is de-
fined as,

v · u =

n∑
i=1

viui

Theorem 1 The axioms of an inner product hold for the dot product. That is:

1. (v + u) · w = (v · w) + (u · w)

2. (αv · u) = α(v · u)

3. v · u = u · v

4. v · v ≥ 0 and v · v = 0 ⇐⇒ v = 0

Proof:

1.)

(v + u) · w =

d∑
i=1

(vi + ui)wi

=

d∑
i=1

(viwi + uiwi)

=

d∑
i=1

viwi +

d∑
i=1

uiwi

= (v · w) + (u · w)
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2.)

(αv · u) =

d∑
i=1

(αvi)wi

= α

d∑
i=1

(viwi)

= α(v · u)

3.)

v · u =

d∑
i=1

viui

=

d∑
i=1

uivi

= u · v

4.)

v · v =

d∑
i=1

v2
i

and
d∑

i=1

v2
i = 0 ⇐⇒ ∀i ∈ [d] vi = 0 ⇐⇒ v = 0

and

∃i ∈ [d] s.t. vi , 0 =⇒

d∑
i=1

v2
i > 0

�

Intuition
There are three perspectives I find useful for thinking about the dot products. Ordered
from the least abstract to the most abstract, these perspectives are:

1. The dot product succinctly describes a weighted sum

2. The dot product describes a geometric relationship between two vectors
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3. The dot product is analogous to the product on scalars

These perspectives are described in the sections below:

1. The dot product succinctly describes a weighted sum

The dot product is useful for succinctly describing a weighted sum of variables. Lets
say we have a vector of variables storing some kind of data x. Let’s say we have a
vector of weights w and we want to sum the variables in x where each element xi in
x is multiplied by its weight wi in w. This operation is stated succinctly as w · x. For
example, if the weight vector w consists of only ones, then the dot product is simply the
sum of the variables in x.

Whenever you find a dot product, it helps to think about the operation as a sum of
variables where each variable is multiplied by a weight.

2. The dot product describes a geometric relationship between two vectors

The dot product uses the relationship between the directions in which the two vectors
point. More specifically, if the two vectors point in a similar direction, the magnitude of
the dot product increases. If they point in drastically different directions, the dot product
decreases. Now, the question naturally arises, what do we mean by “point in a similar
direction?” What do we mean by “similar”? The dot product asserts that the angle
between the two vectors measures how similarly they point. The smaller the angle, the
smaller will be the dot product. To show how this works, we first show that the dot
product can be computed using the angle between a and b as follows:

a · b = ‖a‖ ‖b‖ cos θ

(Theorem 2). If θ := 0, then the two vectors point in the same direction. In this case,
cos θ = 1 and the dot product reduces to simply computing the product of the two
vectors’ magnitudes. If θ = π/2, then the two vectors point in perpendicular directions
(i.e. maximally different directions). We see that cos π/2 = 0 and the dot product
between the two vectors is zero.

Another way to understand how this works is to look at the projection of one vector
onto the other. That is, given two vectors a, b, the dot product between these vectors
computes the product of the magnitudes of a and b along the direction that the two
vectors share (Figure 1). Said differently, the dot product a · b can be viewed as the
magnitude of the projection of one of the vectors onto the other vector multiplied by the
magnitude of the vector being projected upon. That is,

a · b =
∥∥∥proj(a,b)

∥∥∥ ‖b‖
=

∥∥∥proj(b, a)
∥∥∥ ‖a‖

c©Matthew Bernstein 2016 3



If the two vectors are orthogonal, then the projection of either vector onto the other will
be zero and thus the dot product will be zero. In contrast, if two vectors point in the
same direction, then the projection of the smaller vector onto the larger vector is simply
the smaller vector so we multiply the magnitude of the smaller vector by the magnitude
of the larger vector (i.e. simply multiply their norms).

Given this geometric interpretation of the dot product, we can see that taking the
dot product of some vector a and a unit vector b, finds the length of the projection of a
along the axis defined by b:

a · b = ‖a‖
∥∥∥proj(b, a)

∥∥∥
=

∥∥∥proj(b, a)
∥∥∥ because ‖a‖ = 1

Thus, whenever one of the vectors in a dot product is a unit vector, the operation can
always be viewed as the length of the projection along the axis defined by the unit vector.

Figure 1: The projection of a onto b.

Theorem 2 Given θ is the angle between the two v and w, the following definition
for the dot product between v and w is equivalent to Definition 1:

v · w = ‖v‖ ‖w‖ cos θ

Proof:

Let a and b be two vectors in a d-dimensional coordinate space and let e1, e2, . . . , ed
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be the standard basis vectors of the space. Then,

a =

d∑
i=1

aiei

b =

d∑
i=1

biei

First, we note that by the definition of a standard basis, the vectors e1, e2, . . . , ed are
all orthonormal to each other. That is,

ei · ei = 1 they are all unit vectors
i , j =⇒ ei · e j = 0 they are all orthogonal to each other

Next, by the geometric definition of the dot product,

a · ei = ‖a‖ ‖ei‖ cos θa,ei

= ‖a‖ cos θa,ei

= ai see Figure 1

We see that ai is the component of a in the direction of the base-vector ei. Finally,

a · b = a ·
 d∑

i=1

biei


=

d∑
i=1

(a · biei) axiom 1 of inner product

=

d∑
i=1

bi(ei · a) axiom 3 of inner product

=

d∑
i=1

bi(a · ei) axiom 2 of inner product

=

d∑
i=1

biai

This is the algebraic definition of the dot product.

�
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3. The dot product is analogous to the product on scalars

One way to understand the dot product is as an operation on vectors that is analogous
to the product on scalars. Given two scalars, x, y ∈ R, it is obvious that the more we
increase the magnitude (i.e. absolute value) of either x or y, the more that the magnitude
of the product will grow. A product on vectors should behave similarly and indeed the
dot product does. Given two vectors a and b, if we increase the norm of either of the
vectors, the magnitude of the dot product increases. We see this clearly expressed in the
‖a‖ ‖b‖ term of the geometric definition of the dot product:

a · b = ‖a‖ ‖b‖ cos θ

However, unlike the product between scalars, a product between vectors should also
take into account the direction in which the two vectors point. The dot product asserts
that if the two vectors point in a similar direction, the magnitude of the dot product
increases. If they point in drastically different directions, the dot product decreases.

Antoerh aspect to the product of scalars that is analogous to the dot product is that if
x and y have opposite signs then xy < 0. Can the idea of “opposite signs” be expressed
in a product on vectors? Since the norm is always positive, the term, ‖a‖ ‖b‖, cannot
express “opposite signs.” Rather, we see that if the angle between the vectors a and b is
obtuse, then their dot product will be negative:

−
π

2
> θa,b > −

3π
2

=⇒ cos θa,b < 0

=⇒ ‖a‖ ‖b‖ cos θa,b < 0
=⇒ a · b < 0

Thus, two vectors “have opposite signs”, according to the dot product, if the angle
between them is greater than π/2 and less than 3π/4.
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