Squared loss

Squared loss is a loss function that can be used in the learning setting in which we are
predicting a real-valued variable y given an input variable x.

That is, we are given the following scenario: Let S := {(x1,y1), (x2,2), - -+, (Xn, Yn)}
be our training data where x; € X are the instances (X is the space of possible instances)
and y; € R is a numeric value corresponding to each instance. Let & be a hypothesis (i.e.
a statistical model) where /4 : X — R. In this setting, the squared loss for a given item
in our training data, (y, x), 1s given by

gsquared(x’ Ys h) = (Y - h(x))z

(Definition 1).

Definition 1 Given a set of possible instances X, an instance x € X, an associated
variable y € R, and a hypothesis function h : X — R, the squared loss of h on (x,y)
is given by

gsquared(xa Y, h) = (.y - h(x))z

The empirical risk function over the training data is then the mean of the individual

losses:
IS|

1
LS (h) = m Z fsqua.red(xi» Yis h)
i=1

. The empirical risk of the squared error is illustrated geometrically in Figure 1. An
empirical risk minimization (ERM) algorithm will then seek an 4 that minimizes the
average area of the squares.

Intuition: maximum likelihood estimation under an implicit Gaus-
sian model

Applying an ERM algorithm over a hypothesis space H using the least squared loss
function is equivalent to finding the maximum likelihood estimate under an implicitly
assumed probabilistic model: given an item’s value of x, it’s value of y is determined by

adding Gaussian noise to a deterministic function of x. That is, we assume there exists
a “true” function f € H such that

yi=fx)+e

© Matthew Bernstein 2017 1



(@ (b)

Figure 1: (a) A plot of training set S where X := R. (b) Fitting the data with a linear
hypothesis 4. The empirical risk is the average size of the blue squares.

where ¢; is Gaussian noise we add to f(x;). That is,
& ~ Normal(0, o)
. Stated equivalently, y; is the outcome of a random variable
Y; ~ Normal(f(x;), o?)

. This is proven in Theorem 1.

Theorem 1 Given a joint distribution over
Y13Y27~"5Yn | X1, X2, 0005 Xy
where
Y: | x; ~ Normal(h(x;), o%)

and

XiEX

for a hypothesis h : X — R in a hypothesis space H, the maximum likelihood
estimate of h over the training data S := {(x1,y1), (X2,¥2), ..., (Xs, Y,)} (Where y; is
the realization of Y;) is equal to the ERM estimate using squared loss over S.
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Proof:

hye := argmax p(S; h)

heH
Is|
= argmax | | p(yi, xi3 h)
heH i=1
Is|
=argmax | | p(y; | x;; h)p(x;)
heH 4
Is|
=argmax | | pOi | x;; h) h is only used to explain y;
heH i=1
ISl 1 1 2
= argmax ¢ 22 VD)
heH iy N2mo?
IS1 1 1 R
= argmax Z log( ¢~ 32 O ) log is monotonic
heH 4o 2no?

-

IS| 1
- 1 - — (i - h(x, 2]
g 3 o) - st s

i=1
IS 1
= —=— (i — h(x;))*
arggl{ax ; [ 752 ) (xi)) ]
IS
= argmin » (y; — h(x;))*
}%E‘H ;
IS1
= argmin— » (y; — h(x;))’
st S| Z
= argmin Lg(h)
heH
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