
Squared loss
Squared loss is a loss function that can be used in the learning setting in which we are
predicting a real-valued variable y given an input variable x.

That is, we are given the following scenario: Let S := {(x1, y1), (x2, y2), . . . , (xn, yn)}
be our training data where xi ∈ X are the instances (X is the space of possible instances)
and yi ∈ R is a numeric value corresponding to each instance. Let h be a hypothesis (i.e.
a statistical model) where h : X → R. In this setting, the squared loss for a given item
in our training data, (y, x), is given by

`squared(x, y, h) := (y − h(x))2

(Definition 1).

Definition 1 Given a set of possible instances X, an instance x ∈ X, an associated
variable y ∈ R, and a hypothesis function h : X → R, the squared loss of h on (x, y)
is given by

`squared(x, y, h) := (y − h(x))2

.

The empirical risk function over the training data is then the mean of the individual
losses:

LS (h) :=
1
|S |

|S |∑
i=1

`squared(xi, yi, h)

. The empirical risk of the squared error is illustrated geometrically in Figure 1. An
empirical risk minimization (ERM) algorithm will then seek an h that minimizes the
average area of the squares.

Intuition: maximum likelihood estimation under an implicit Gaus-
sian model
Applying an ERM algorithm over a hypothesis space H using the least squared loss
function is equivalent to finding the maximum likelihood estimate under an implicitly
assumed probabilistic model: given an item’s value of x, it’s value of y is determined by
adding Gaussian noise to a deterministic function of x. That is, we assume there exists
a “true” function f ∈ H such that

yi = f (xi) + εi
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Figure 1: (a) A plot of training set S where X := R. (b) Fitting the data with a linear
hypothesis h. The empirical risk is the average size of the blue squares.

where εi is Gaussian noise we add to f (xi). That is,

εi ∼ Normal(0, σ2)

. Stated equivalently, yi is the outcome of a random variable

Yi ∼ Normal( f (xi), σ2)

. This is proven in Theorem 1.

Theorem 1 Given a joint distribution over

Y1,Y2, . . . ,Yn | x1, x2, . . . , xn

where
Yi | xi ∼ Normal(h(xi), σ2)

and
xi ∈ X

for a hypothesis h : X → R in a hypothesis space H , the maximum likelihood
estimate of h over the training data S := {(x1, y1), (x2, y2), . . . , (xn, yn)} (where yi is
the realization of Yi) is equal to the ERM estimate using squared loss over S .
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Proof:

hMLE := argmax
h∈H

p(S ; h)

= argmax
h∈H

|S |∏
i=1

p(yi, xi; h)

= argmax
h∈H

|S |∏
i=1

p(yi | xi; h)p(xi)

= argmax
h∈H

|S |∏
i=1

p(yi | xi; h) h is only used to explain yi

= argmax
h∈H

|S |∏
i=1

1
√

2πσ2
e−

1
2σ2 (yi−h(xi))2

= argmax
h∈H

|S |∑
i=1

log
(

1
√

2πσ2
e−

1
2σ2 (yi−h(xi))2

)
log is monotonic

= argmax
h∈H

|S |∑
i=1

[
log

(
1

√
2πσ2

)
−

1
2σ2 (yi − h(xi))2

]

= argmax
h∈H

|S |∑
i=1

[
−

1
2σ2 (yi − h(xi))2

]

= argmin
h∈H

|S |∑
i=1

(yi − h(xi))2

= argmin
h∈H

1
|S |

|S |∑
i=1

(yi − h(xi))2

= argmin
h∈H

LS (h)

�
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