
Psuedocounts
When estimating the parameters of a categorical or multinomial distribution, a common
practice is to add pseudocounts to the observed counts in the data. This process, known
as additive smoothing, regulates the maximum-likelihood estimate in order to avoid
overfitting. That is, it prevents extreme assignments to the parameters that are due to a
lack of data that would be used to estimate that parameter.

Standard psuedocounts
A psuedocount c is a pre-determined value that is added to the counts of occurrence of
each category/class in the data when estimating the parameters of a multinomial.

First, let’s look an example of estimating parameters without psuedocount. If we are
estimating the parameter θ that a coin lands heads and we have observed counts H and
T for heads and tails respectively, then our maximum likelihood estimate of θ is

θ̂ =
H

H + T

If we use a psuedocount value of c, then our estimate would be

θ̂ =
H + c

(H + c) + (T + c)

=
H + c

H + T + 2c

By adding equal psuedocounts to each outcome, we push our estimate of the parameter
closer to the uniform distribution than the maximum likelihood estimate of the parame-
ter. In essence, a common psuedocount across categories/classes implies a hypothetical
scenario in which we have already observed equal numbers of categories/classes prior
to observing the data. Thus, the larger the psuedocount, the more data will be needed to
push the estimate of the parameters away from the uniform distribution.

We note that a psuedocount of c = 1 is often called Laplace smoothing.

M-estimates
M-estimates generalize psueudocounts that are constant across categories/classes to
psuedocounts that differ for each category/class. We imagine that we have c total counts
and we distribute them amongst the observed class counts in the data according ac-
cording to some distribution specified by q := q1, q2, . . . , qk where k is the number of
categories/classes and

∑k
i=1 qi = 1. That is, we pretend that we have already observed
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q1c, q2c, . . . , qkc items of each category before observing the data. Thus, we would
estimate our parameters by

θi =
xi + qic∑k

j=1(x j + q jc)

The distribution specified by q encodes our prior knowledge about the parameters and
the count c encodes the emphasis that will place on this prior knowledge.

Interpretation of psuedocounts as Bayesian prior knowledge
Psuedocounts can be theoretically justified within a Bayesian framework for estimating
parameters. More specifically, using psuedocounts to augment the maximum likelihood
estimate of the parameters is equivalent to finding a maximum a posteriori estimate or a
posterior-mean estimate of the parameters.

Psuedocounts as a maximum a posteriori (MAP) estimate

Recall that given a counts vector x generated by a multinomial distribution, the posterior
distribution over the parametersΘwith a Dirichlet prior is a Dirichlet. More specifically,
given the prior over the parameters

Θ ∼ Dir(α1, . . . , αd)

the posterior distribution after observing x is

Θ | x ∼ Dir(x1 + α1, . . . , xd + αd)

The MAP estimate is then

θMAP
i =

xi + αi − 1∑d
j=1(x j + α j − 1)

Thus, using psuedocounts of ci added to each xi when estimating our parameters as
follows:

θ̂i =
xi + ci∑d

j=1(x j + c j)

is equivalent to the MAP estimate assuming a Dirichlet prior parameterized by (c1 +

1, c2 + 1, . . . , ck + 1).

Psuedocounts as a mean of the posterior (MOP) estimate

Again assuming that x was generated by a multinomial distribution assuming a Dirichlet
prior, the mean of the posterior is

θMOP
i =

xi + αi∑d
j=1(x j + α j)
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Thus, psuedocounts of ci added to each xi when estimating our parameters, as follows
is equivalent to a mean of the posterior estimate assuming the prior distribution was a
Dirichlet parameterized by c1, c2, . . . , ck.

θ̂i =
xi + ci∑d

j=1(x j + c j)

we see that
θMOP

i = θ̂i =⇒ ci = αi

Adding psuedocounts is akin to finding the mean of a Dirichlet posterior given a Dirich-
let prior with parameters c1, c2, . . . , ck.
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