
Poisson distribution
The Poisson distribution is a discrete probability distribution that is most commonly
used for for modeling situations in which we are counting the number of occurrences
of an event in a particular interval of time where the occurrences are independent from
one another and, on average, they occur at a given rate λ. That is, the Poisson distribu-
tion models independent events that occur randomly, but over a long enough period of
time, the rate of occurrences converges to λ. For example, the probability distribution
over the number of earthquakes in a year can be modeled as a Poisson distribution be-
cause although earthquakes occur randomly, over a long period of time, the number of
earthquakes over time approaches a constant rate.

The concept of “rate” modeled by the Poisson does not need to be temporal. That
is, it does not need to be the number of events per unit of time. Rather, the rate can
measure the number of events per unit of length or area. For example, the number of
chocolate chips in a cookie can be modeled with the Poisson distribution. On average,
we might expect λ chocolate chips per unit of area of the cookie. However, chocolate
chips are randomly dropped into the batter and thus, occurrences of chocolate chips in
the cookie are random and independent from one another.

We denote a random variable X that follows a Poisson as

X ∼ Poiss(λ)

where λ is called the “rate” parameter.

Definition 1 A discrete random variable X follows a Poisson distribution if its
probability mass function is given by

p(x) :=
e−λλx

x!

where λ is the Poisson rate parameter.

Deriving the Poisson distribution
The Poisson distribution can be approximated by a binomial distribution for which the
number of trials n is very large, and the probability of success p in a given trial is very
small. For example, we can model the distribution over the number of earthquakes in a
year as a binomial distribution in which each millisecond is a trial and the probability
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Figure 1: The probability mass function p(x | λ) of the Poisson distribution for λ =

1, 4, 10.

of an earthquake in each millisecond is p. The number of trials n would then be the
number of milliseconds in a year. Of course, the probability of an earthquake in a given
millisecond is very small and the number of milliseconds in a given year is very large.
On average, as a result, we get approximately λ earthquakes per year.

We will derive the Poisson by assuming some average rate λ and letting λ := np.
When taking the limit, n→ ∞, we get the Poisson distribution.

Theorem 1 Let X ∼ Bin(n, p) where n → ∞, and np = λ. Then X follows a
Poisson distribution.

Proof:

The binomial p.m.f. is

p(x) =

(
n
x

)
px(1 − p)n−x

c©Matthew Bernstein 2016 2



Then,(
n
x

)
px(1 − p)n−x =

(
n
x

) (
λ

n

)x (
1 −

λ

n

)n−x

Note 1

=
n!

(n − x)!x!

(
λ

n

)x (
1 −

λ

n

)n−x

Note 2

=
n!

(n − x)!x!

(
λ

n

)x (
1 −

λ

n

)n (
1 −

λ

n

)−x

=
n(n − 1)(n − 2) . . . (n − x + 1)(n − x)!

(n − x)!x!

(
λ

n

)x (
1 −

λ

n

)n (
1 −

λ

n

)−x

=
n(n − 1)(n − 2) . . . (n − x + 1)

x!

(
λ

n

)x (
1 −

λ

n

)n (
1 −

λ

n

)−x

Note 3

=

(
λx

x!

) (
n(n − 1)(n − 2) . . . (n − x + 1)

nx

) (
1 −

λ

n

)n (
1 −

λ

n

)−x

=

(
λx

x!

) (n
n

) (n − 1
n

)
. . .

(
n − x + 1

n

) (
1 −

λ

n

)n (
1 −

λ

n

)−x

Note 4

Now we take the limit as n approaches infinity:
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Notes:

1. Substitute p = λ
n

2. Expand the binomial coefficient

3. Cancel the (n − x)! from the numerator and denominator.

4. Note that in the numerator of the first term (i.e. n(n− 1)(n− 2) . . . (n− x + 1)),
there are x factors. This matches the number of n’s being multiplied in the
denominator.

5. By the algebraic limit theorem

6. Notice that limn→∞

(
n−i
n

)
approaches 1 for all i. Then, limn→∞

(
1 − λ

n

)n
= e−λ.

Lastly, limn→∞

(
1 − λ

n

)−x
= 1.
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Mean

Theorem 2 Given a random variable X ∼ Pois(λ), its mean is given by,

E(X) = λ

Proof:

E(X) =

∞∑
x=0

x
e−λλx

x!

=

∞∑
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x
e−λλx

x!
because the first term is zero
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∞∑
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λx−1

(x − 1)!
pulling out a λ

= λe−λeλ we recognize the Taylor Series of eλ

= λ

�

Variance
Theorem 3 Given a random variable X ∼ Pois(λ), its variance is given by,

Var(X) = λ
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Proof:
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Notes:

1. by Theorem 2

2. by LOTUS

3. first term is zero

4. starting point of first summation can start from x = 2 because the first term is
zero
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5. let i := x − 2 and j := x − 1

6. Taylor series expansion of eλ

�

c©Matthew Bernstein 2016 6


