Ordinary least squares

Given a training data set S := {(X;,y1), ..., (X, y»)} where x; € R? and y € R, ordinary
least squares (OLS) is a regression algorithm for finding a linear model that minimizes
the squared error on the training data. That is, given a data point x € R¢, OLS considers
hypotheses of the form

hap(®) = @+ > Bix;
i=1
—a+x'p

Each hypothesis function is parameterized by the constant @ and vector 8 where « is the
translation of the dividing hyperplane and B are the coeflicients. If we choose to append
a 1 to each x vector and let the first element of 8 be @, then we can state the model more
succinctly using only the 8 parameter:

h(x) =x'pB (D

The OLS algorithm specifically finds such a hypothesis that minimizes the squared error
on the training set. That is, OLS solves

. 1 <
h := argmin— fs uare (Xi, is h)
gh n ; q d Yy
= argmin ;= h(xi))2
e ; (v
Since each 4 is characterized by a 8, OLS finds
B ;= argmin ) (y; — xl.Tﬂ)2
2

As proven in Theorem 1, the solution is given by
B=X"%)"X"y

where X is the data matrix in which rows correspond to training samples and columns
correspond to variables. An example of an OLS model fit to a dataset is illustrated in
Figure 1.
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Theorem 1

argmin ) (vi = x! B = X' X)Xy
B =
Proof:

D 0i=xIB = (y—XB) (y - XB)
i=1

= -B' XDy -Xp)
=y'y-y'XB-p'X"y+p'X'XB
=y'y-28"X"y + B'X"Xp Note 1
Now we will work to finding the B that minimizes this function. Note that since
Yo (yi — X! B)? is a quadratic equation in terms of 8, we can take the gradient with

respect to B set it to the zero vector and solve for B. This will find the B that
minimizes the function.

0=Vs(y'y-28"X"y + 'X"XB)
= 2X"y + 2X"XB Note 2
Setting this to the zero vector and solving for 8 we get

2XTy +2X"XB =0
= X'XBg=X"y
= X'X)'X"XB = X'X)"'X"y
= p=X"X)"X"y
Notes

1. In this step, we combined the second and third terms in the summation as
follows: let’s look at the second term —y” XB. If we take the transpose of the
transpose of this object we get

(e} = 7))
= (-#'X'y)
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Note that the object inside the transpose is equal to the third term in the sum-
mation. Furthermore, we note that this term is actually a scalar when we
examine the dimensions of this term:

FXTy=p" X'y
Ixn XM ]
So we see that it is a 1 X 1 matrix, which is simply a scalar. Taking the
transpose of a scalar results in a scalar, so it we can simply drop the transpose
and combine the second and third terms.

. In this step, we take the gradient of this function with respect to 8. The first
term y”y clearly becomes the zero vector because there is no 8 present. Look-
ing at the second term

ro(-28"X"y)
B
Vp-28'XTy=|
a(-28"XTy)
L,
[o(-2 3L, Bi(XTy))
B

(-2, BiXTy))
L 9B
—2(X"y),

|-2(X"y),
= -2X"y

And finally, we note that the third term is a quadratic form with X7 X being
the matrix of the quadratic form. Thus,

Ve B X"XB = 2X"XB
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Figure 1: The blue line visualizes an OLS model fit to a set of data points in R,

© Matthew Bernstein 2017 4



